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ABSTRACT 

A new method (called constrained sinusoidal crossover adjustment) for removing the orbit error in satellite 

altimetry is tested (using crossovers accumulated in the first 91 days of the Geosat non-repeat era in the tropical 

Pacific) and found to have many excellent qualities. Two features distinguish the new method from the conven- 

tional bias-and-tilt crossover adjustment. First, a sine wave (with wavelength equaling the circumference of the 

earth) is used to represent the orbit error for each satellite revolution, instead of the bias-and-tilt (and curvature, if 

necessary) approach for each segment of the satellite ground track. Secondly, the indeterminacy of the adjustment 

process is removed by a simple constraint that minimizes the amplitudes of the sine waves, rather than by fixing 

selected tracks. Overall the new method is more accurate, more efficient, and much less cumbersome than the old 

method to implement. The idea of restricting the crossover adjustment to crossovers between tracks that are less 

than certain days apart in order to preserve the large-scale long-term oceanic variability is also tested with incon- 

clusive results because the orbit error was unusually nonstationary in the initial 91 days of the GEOSAT Mission. 

1. INTRODUCTION 

As far as physical oceanography is concerned. satellite altimetry seeks to determine the sea level variation 

caused by the Ocean dynamics [e.g., Wunsch and Gaposchkin, 19801. In this endeavor, two major obstacles are usu- 

ally encountered. First is the uncertainty of the marine geoid, which is the sea level variation associated with the 

earth gravity field and is far more energetic than the oceanic signal [e.g., Tai, 19831. However, there are ways to get 

around the geoid problem by differencing sea level measurements at the same location (this occurs when satellite 

ground tracks cross each other [called crossover points], or when tracks are repeated), such as the exact-repeat stra- 

tegy, and the crossover analysis [e&, Fu and Chelton, 1985; Cheney, et al., 19861. 

The second major problem involves the orbit error, which is at the one meter level when precise orbit determi- 

nation has been applied (e.g., Seasat and the first 18 months of Geosat); while it is at the four meter level for the 

Geosat Exact Repeat Mission. If untreated, the orbit error would overwhelm the oceanic signal we seek to recover. 

It is a well known fact that the orbit error has very long wavelengths (around the circumference of the earth, i.e., 

approximately 40,000 km) [Cutting et al., 1978; Marsh and Williamson, 19801. The most often used method to 

reduce the orbit error is the so-called crossover adjustment, which parameterizes the orbit error by some long- 
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wavelength functions and then solves for those parameters that minimize the crossover differences [e.g., Tai and Fu, 

19861. The most popular parameterization is the so-called bias-and-tilt method, which assigns a bias and a tilt to 

each satellite track (if a track is too long, a curvature term is sometime added). When the length of a track is a small 

fraction of one revolution, this linear representation is adequate. But this is not always the case. Yet the bias-and- 

tilt crossover adjustment has been the workhorse with reasonably good results [e.g., Marsh et al., 19821. As a 

matter of fact, the enire Seasat record has been adjusted using this method Bapp, 19831. A much more accurate 

method is to represent the orbit error by a Fourier series. Douglas et al. [ 19841 have applied this method to a three- 

day arc of Seasat and found the problem to be singular, the exact cause of which has been pinpointed by Tai and Fu 

[1986]. However, this method is much more complicated (the author is not aware of any case study going beyond a 

three-day arc). 

How one can strike a balance between the efficiency and simplicity of the bias-and-tilt method and the accu- 

racy of the Fourier series method is the subject of the following sections. It will be demonstrated that, by 

parameterizing each satellite revolution by a sine wave with Wavelength equaling once per revolution, and by a sim- 

ple constraint to resolve the indeterminacy which is present in all crossover adjustment methods, the new method 

(called constrained sinusoidal crossover adjustment) not only is more accurate than the bias-and-tilt method, but also 

is more efficient and much simpler. This is Part 1 of the crossover analysis in the tropical Pacific using the Geosat 

non-repeat data (only the unclassified crossover diffcrences are availble for this analysis). Part 2 will discuss sea 

level map time series. Part 3 will incorporate XBT data and numerical modeling. 

2. DATA 

The Geosat was launched in March, 1985. It circles the earth approximately every 101 minutes. Every three 

days, it produces a roughly uniform satellite ground track grid wih equatorial spacing of 930 km. After three days, 

the uniform grid is displaced eastward at the equator by 116 km. After 24 days, it produces a roughly uniform (but 

denser) grid with equatorial spacing of 116 km. After 24 days, this denser grid is displaced at the equator by 39 

km. Every 72 days, a roughly uniform grid with an even smaller equatorial spacing of 39 km is produced. This 

information is based on experience with the first monh of Geosat operation and future projections (obtained from 

the unclassified abstracts of the first Geosat data review released by Applied Physics Laboratory of the Johns Hop- 

kins University). 
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This elaborate description serves to illustrate three points. First, the crossover points are evenly distributed in 

space (unlike the exact-repeat orbit configuration). Secondly, three days and its integral mutiples are natural candi- 

dates as time criterions in the crossover adjustment to be discussed in Section 4, because when the time criterion is a 

multiple of three days, each track in the adjustment has about the same number of crossovers distributed about the 

same way along track, and, thus, will be adjusted equally well. Thirdly, GEOSAT's (GEOdetic SATellite) primary 

mission (the initial 18 months) is geodetic in nature (i.e., to measure the marine geoid), and major aspects of the 

mission are classified. However, crossover differences are unclassified, albeit the unclassified part has to be 

extracted from the classified part. This service was generously provided by the Navy Oceanographic Office under 

the direction of Dr. Thomas Davis. 

The crossovers used in this analysis are between 20"s and 20"N latitudes, 127"E and 285"E (75"W) longi- 

tudes, from April 23 to July 22, 1985 (91 days). There are altogether 49576 crossovers. The root-mean-square 

(RMS) crossover difference before adjustment is 130 cm. With the crossover difference defind to be the value 

along the later track minus the value of the earlier track, the mean, maximum, and minimum are -0.4 cm, 412 cm, 

-446 cm. 

3. CONSTRAINED SINUSOIDAL CROSSOVER ADJUSTMENT 

The orbit error has a predominant spectral peak at once per revolution, Le., it has the basic feature of a slowly 

varying sinusoidal wave train with a predominant wavelength near 40,000 km (or period near 101 minutes). The 

bias-and-tilt (and curvature) method is bent on representing the sine wave over limited length by polynomials up to 

degree 2. It is intuitively clear that the approximation gets better with more parameters, but gets worse with longer 

length. However, exactly how good or bad these approximations are have never been investigated before. 

Recently, Tai [1987] have derived analytical formulas relating the ( R M S )  relative error to the track length. These 

are tabulated in Table 1 with the track length presented in degrees (360" corresponds to one wavelength or period) 

and RMS relative error in percents. 

It is clear from Table 1 that the quadratic representation is by far the most accurate. Even so, it commits RMS 

relative error of 8.7% while approximating a sine wave over half a wavelength. In contrast, the linear representation 

would commit error about the same magnitude over only half the distance and would be almost 32% in error over 

the same distance. Using the error table, results of several previous crossover adjustments Marsh et al., 1982; 
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Rapp, 1983; Fu and Chelton, 1985; Cheney et al., 198a have been reinterpretated by Tai [1987]. But more impor- 

tantly, we have been so bogged down by precedents that the obvious thing has eluded us, i.e., why do we insist on 

approximating short segments of a sinusoidal wave train by polynomials? Why not approximate a slowly varying 

sinusoidal wave train by sine waves? 

3a. Sinusoidal representation of the orbit error 

Representing the orbit error over each revolution [or over several revolutions, see point (2) below] by a sine 

wave of the form: a cos(2nfl) + b sin(2n/T), where T is the predominant period, has many advantages over the 

bias-and-tilt method. 

(1). Accuracy and consistency. Satellite ground tracks are seperated by land and data gaps into segments. The 

bias-and-tilt method assigns each segment a polynomial representation (e.g., a+bt+ct2 for a quadratic fit) and 

contrives to adjust these parameters to minimize the crossover differences at crossovers of tracks and along 

exact-repeat tracks. In this process, long segments are treated less accurately in comparison to short seg- 

ments. And consecutive segments (e.g., two segments separated by Taiwan) are treated as if unrelated and 

could give rise to inconsistency. The sinusoidal representation cures all these problems. 

(2). Economy of representation. In a global adjuslmcnt, one revolution is generally broken into five to eight seg- 

ments. If the quadratic approximation is used, 15 to 24 parameters are needed to represent the orbit error for 

one revolution, whereas only two parameters are needed in the sinusoidal representation, Le., the number of 

unknowns in the adjustment process is much less for the sinusoidal representation. This will become crucial 

when the problem size is approaching the computational limit For instance, when Rapp [1983] undertook the 

formidable job of adjusting the entire Seasat record to remove the orbit error, the whole job had to be broken 

down into one global adjustment and four regional adjustments. The Seasat record is 3 months long and con- 

tains about 1300 revolutions. Actually, the size of Rapp's adjustment had already been reduced by combining 

exact-repeat tracks (Le., 24 days contracted to three days) and by using only bias-and-tilt fit instead of qua- 

dratic fit (for segments less than 212 seconds in duration, only the bias was used). It has been estimated that, 

using the sinusoidal representation and the San Diego Supercomputer Center's (SDSC) Cray XMP-48, the 

entire Seasat record can be easily accommodated in a single adjustment (see Section 3b). If the problem size 

is really becoming hard to handle, one can even try representing two (or even three) revolutions by one sine 
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wave (i.e., two parameters). 

(3). Compatibility with the constraint. There is a basic indeterminacy (see Section 3c) common to all crossover 

adjustments. One way of resolving this indeterminacy is to apply a constraint to minimize not only the cmss- 

over differences but the unknowns as well. In this vein, the sinusoidal representation is far more physically 

meaningful, because what is minimized is the amplitude of the sine wave @e., no unnecessary correction is to 

be applied). Whereas the notion of minimizing parameters representing biases, slopes, and curvatures together 

with crossover differences is rather troubling. As a matter of fact, if the unit measuring distance (or time) 

along track is changed (e.g., from cm to m to km, or from second to minute to hour), a different result can be 

obtained. 

3b. Least squares problem 

The crossover adjustment is set up in the context of a least squares problem. Using the sinusoidal representa- 

tion, one would get corresponding to each crossover 

[ai cos (2xti / T )  + bi sin (2mi /T)]  - [ai cos (2x4 / T )  + bi sin (2x4 / T ) ]  = dii , (1) 

where subscripts i j  stand for the revolution numbers, and the convention has been adopted that ti > ti and dij = 

S,-Si ( S  is the observed altimetric sea level). These equations are to be solved for the least squares solution, i.e., 

the a’s and b’s that can account for the crossover differences in the least squares sense. The number of equations is 

equal to the number of crossovers, and the number of unknowns is twice the number of involved revolutions (some 

revolutions are absent due to the regional nature of an adjustment or due to data loss). 

One can write (1) in the more convenient matrix form (in the following, bold-faced capital letters represent 

matrices, and bold-faced lowercase letters denote vectors) 

H x = z  , (2) 

where H is made up by the sine, cosine coefficients, and x corresponds to all the a’s and b’s, while z stands for the 

crossover differences. Following standard procedures, one can form the normal equations. 

(HTH)x = H T z  , 

and then the least squares solution 

P = ( H ~ H ) - ~ H ~ z  , 
where T denotes the transpose and -1 stands for the inverse matrix. 

(3) 

(4) 
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One need not follow this formulation. The QR decomposition, which has superior numerical properties, could 

be used instead. However, if the problem size is a major concern (it usually is), the normal equation formulation 

needs much less computer memory. For example, in the 91-day GEOSAT crossover adjustment to be discussed 

below, H is a 49576 x 2406 matrix (i.e., 49576 crossovers and 1203 revolutions are involved), while HTH is a 

2406 x 2406 symmetric matint. As a general rule of thumb, if there are N crossovers and M/2 revolutions, N x M 

storage spaces are needed for H, but only (M2+M)/2 for HTH (remember it is symmetric). Furthermore, if the 

sparseness of H H is taken into account, one can save even more space. In this case, only 3M/2 + 4N/L spaces are 

needed, where L is the average number of crossovers between two revolutions. The entire SEASAT record would 

generate a 2600 x 2600 symmetric matrix, while SDSC’s Cray can handle 2700 unknowns at the same time when 

not even taking advantage of the sparseness. 

3c. Constraint 

All crossover adjustment problems are singular in the sense that the solution to (1) (and similar equations 

when other orbit error representations are used) is nonunique, i.e.. there are parameters which satisfy the homogene- 

ous equations corresponding to (1) (i.e., di,=O). In other words, there are parameters which would leave no trace in 

crossover differences. That this is the case is not too difficult to see. Any geographically dependent function which 

can be represented by the orbit error representation under study would not produce any crossover difference. The 

easiest example is furnished by the bias-and-tilt case. Suppose a least squares solution has been obtained in this 

case. If a constant (but otherwise arbitrary) bias is added to all tracks, then it is clear that the new solution satisfies 

the equations as well as the old solution. Thus, infinite number of solutions, which all satisfy the equations in the 

least squares sense, are possible. One would have to find a way to remove this indeterminacy. 

The customary way to remove the arbitrariness is to keep one or more tracks fixed, i.e., these tracks are not 

adjusted for the orbit error. Deciding which tracks to fix is not as easy as it seems. On the contrary, the matter can 

become extremely tricky. For small regions that the ground tracks resemble the pattern resulted from two intersect- 

ing sets of parallel straight lines, it can be proved (see Appendix A) that two parallel tracks need to be fixed in the 

bias-and-tilt case, while it is necessary to fix three parallel tracks in the quadratic (bias, tilt, and curvature) case. 

There are other drawbacks to fixing tracks, e.g., what if the fixed tracks happen to have large orbit errors? The 

situation is somewhat better if the tracks have consistent orbit errors (Le., wrong in the same way). If this is the 
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case, the residual (after adjustment) crossover differences can be made small, although the absolute orientation of 

the resulted surface is wrong. In the event that the orbit errors are conflicting (e.g., one track is tilted in one direc- 

tion, while the other is tilted in the opposite direction), not even the residual crossover difference can be made small. 

One would have to experiment with many different combinations of fixed tracks to find a better combination. Or 

one could do a pre-adjustment to make the fixed tracks consistent with each other. One more drawback has to do 

with the record keeping complications. When a track is fixed, its corresponding terms are deleted from (1) (or 

equivalent equations). An algorithm would have to distinguish fixed tracks from free tracks. This complicates the 

algorithm and slow down the execution. 

Furthermore, the tactics of fixing tracks often cannot remove all the singularities. The simplest example is for 

a track to have only one crossover. Then as far as this track is concerned, only one parameter can be solved for. 

Any other parameterization would create nonuniqueness. Therefore, all tracks have to be screened for the number 

of crossovers along each, and h e  Parameterization is set accordingly (what a record keeping nightmare this can 

become). Even after the screening, some singularities can still remain due to strange configurations involving a few 

tracks. One has to work hard to eliminate all the singular configurations. The complexity can get very frustrating 

indeed. The only realistic way is to solve it anyway (hoping there is no overflow), then screen and eliminate all 

tracks having extraordinarily large solutions from the adjustment process. 

One can remove the nonuniqueness by requiring the least squares solution to minimize itself as well (Lawson 

and Hanson, 1974). The simplest way to achieve this is to add h e  following constraint to (2) 

oIx=o , (5) 
where I is the identity matrix, and CT is the weighting. Then the least squares solution of the combined system of (2) 

and (5 )  minimizes the following quantity 

J = ( H x - z ) T ( H x - z ) + & T x  . (6) 

That is, not only is the residual of (2) minimized, the solution itself is also minimized. A sensible choice for CT can 

be made by demanding all the equations in the combined system to have approximately the same uncertainty (Le., 

residuals of the same amplitude). Hence, 

RMS residual crossover difference 
RMS orbit error 

And the solutioin is 
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2 = ( H ~ H  + ~ Z I ) - ' H ~ Z  . (7) 
Note that adding this constraint is equivalent to adding 2 to all diagonal terms of H H in (3) and (4). 

This formulation can be put in the context of the linear optimal estimation theory (Liebelt, 1967). Let R, 

denote the correlation, i.e., R, =E (pq T), where E is the expectation value. Let us rewrite (2) in the form 

z = H x + v ,  (8) 
where v represents the combined effects of the residual orbit error, other error sources, and the oceanic signal. 

Given z and (8), one is asked to derive the linear optimal estimator for x. It can be proved (see Appendix B) that 

2 = (R,-~ + H ~ R , - ~ H ) - ~ H ~ R , , - ~ z  (9) 
If one has little information beyond the RMS values of x and v, Le., a, and a,, one could simply assume R, = a," I 

and R,, = a:I. Then one can easily see the relationship between (7) and (9) with = a,"/o,', Le., a has the mean- 

ing of the noise to signal ratio. Thus. (7) is the crudest linear optimal estimator. When more statistical information 

is availale, one should take advantage of (9). The error estimate for (9) is 

E [(x - 9)(x -9p3 = (R,-' + HTR,,-lH)-l , 

whereas the error estimate for (7) is 

0,2(021+ H H )--I . 
While (7) minimizes (6). (9) minimizes the following quantity [see Bryson and Ho. 19751 

(Hx - z)~R,,-'(Hx - Z) + x~R,-'x . (12) 

3d. Results 

The sinusoidal representation (Section 3a) set up in the context of a least squares problem (Section 3b) cou- 

pled with the constraint (Section 3c) constitutes the so-called constrained sinusoidal crossover adjustment. The orbit 

error is estimated by (7) when minimal information about the orbit error is available (as in the present case). All the 

statistical information that is required to use (7) is the noise to signal ratio, Q. Suppose the residual crossover differ- 

ence can be reduced to 10 cm and the orbit error is about 1 m. One comes up with a value of & = 0.01, which is the 

actual value used in (7). Should the comelation structure of x and v become known to some extent, one would do 

much better with (9) or some approximate form of (9). 

The histograms of crossover differences before and after adjustment are depicted in Figure 1. The adjustment 

reduces the RMS value from 130 cm to 10.85 cm. The after adjustment mean, maximum, minimum are -0.002 cm, 
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173 cm, -180 cm respectively. If values over two standard deviations away from the mean are deleted, the RMS 

value of 10.85 cm can be further reduced to 8.65 cm with 2012 crossovers deleted (about 4% of the total record). 

Assuming the residual errors are independent, 8.65 cm divided by 6 gives a number of 6.1 cm. This is very close 

to the best that can be achieved by any adjustment process. The residual crossover differences have contributions 

from a long list of error sources [see Tapley et af., 19821, besides the fact that they also contain the oceanic variabil- 

ity. Furthermore, the dataset used in this analysis has no water vapor correction. 

The geographical dependence of the residual crossover difference is delineated in Table 2, in which cross- 

overs are put into 2" latitude by 10" longitude bins (the rational for choosing 2" x 10" boxes will be discussed in Part 

2). A map of the tropical Pacific region is included in Figure 2 for reference. It is immediately apparent that some- 

thing is amiss near the southwest comer, which is partially occupied by New Guinea, Australia, and Indonesia. The 

rest of the area is dominated by shallow seas. Thus the tide model could be very bad in this region. In addition, 

there is a general tendency for larger RMS residual crossover differences to occur near the boundaxy of the adjusted 

region. This is due to the fact that least squares line fitting is usually more accurate near the middle than the ends. 

Away from the boundary, there is also the tendency for higher values to occur between 5"N and 10"N. where the 

Inter-Tropical Convergence Zone (ITCZ) lies. Since water vapor correction has not been applied to this data set, 

water vapor variability associated with ITCZ (both in intensity and location) could be a major source of error (note 

that the rain is even worse). 

4. CROSSOVER ADJUSTMENT WITH TIME CRITERION 

It has long been recognized that large-scale oceanic changes could be mistaken for orbit error and removed in 

the adjustment process. To prevent this from happening, Fu and Chelton [1985], in their investigation of the 

Antarctic Circumpolar Currents, have gone so far as to use the bias-only adjustment to avoid removing sea surface 

slope changes associated with current changes. The penalty for using the bias-only adjustment is large residual orbit 

error [Tai, 19873. In addition, even the bias-only method can remove some of the large-scale oceanic signal (see 

Appendix C). Tai and Fu [1986] have proposed a different way to preserve the oceanic signal. Since large-scale 

oceanic changes take months even years to develop (with the exception of the tides), if the adjustment process is 

limited to crossovers between tracks less than some short time apart, then perhaps they can be preserved in the 

adjustment process. The time criterion should be short enough for little large-scale oceanic changes to take place, 
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but long enough to accumulate enough crossovers for the crossover adjustment. In the following, this idea is subject 

to real tests. 

We have selected 3, 6, 12,24 days as test time criterions. The constrained sinusoidal crossover adjustment 

with d = O . O l  is used with the selected time criterion. To be more specific, a three-day criterion, for example, would 

exclude from equation (1) those crossovers whose ti and ti are over three days apart. The results along with those 

of the unadjusted and the 91-day adjustment are tabulated in Table 3. In column one, the residual crossover differ- 

ences of all crossovers (included in the adjustment or not) are listed. Not surprisingly, the best performance is fur- 

nished by the 91-day adjustment (since every crossover is included in this adjustment). But one would have to say, 

the twelve-day adjusatment has done a fairly good job, considering the fact that only one-fourth of all available 

crossovers (see column 3) have been included in this adjustment. The residual crossover differences of crossovers 

included in the adjustments are listed in column 2, the numbers of included crossovers in column 3. It is clear that 

with less equations, the least square solution can fit them better. In column 4, we have the RMS value of the ele- 

ments of x. This is perhaps an indirect confirmation that h e  constraint is working the way it is supposed to work, 

i.e., the solution is minimized and no unnecessary correction is included. In other words, the magnitude of x is 

increasing as more crossovers are included in the adjustment process, because more of the orbit error is being 

resolved. This also implies that three and six-day criterions arc not adequate in the sense that significant portion of 

the orbit error has been left out. 

To examine this matter further, the 91-day period is separated into three equal parts each about 30 days long 

so that the residual crossover differences can be examined in terms of crossovers within each period @e.. ti and r, 

are both within a period) and cross-period crossovers (i.e.. ti belongs to one period, while ti belongs to a different 

period). The rationale is provided by the fact that while a short time criterion preserves the long term oceanic sig- 

nal, it also fails to remove the long term orbit error. Hence, this examination procedure would shed light on how 

much of the oceanic signal is preserved or how much of the orbit error is not removed. In column five through 

seven, the residual crossover difference within each period are listed. 

One is amazed to find how the orbit error has been increasing in amplitude, which has caused the crossover 

difference to increase from a meager 78.47 cm in period 1 to a whopping 171.29 cm in period 3. This is rather 

unusual indeed. Unless there was a major deterioration in the satellite tracking system, this should not have hap- 
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pened. As far as the non-stationarity within each period is concerned, all time criterions have worked well in stamp- 

ing out the nonstationarity. But three-day criterion (perhaps 6-day too) is not adequate even for a 30-day period. 

The twelve-day and 24-day criterions have performed well. Note how the 24-day adjustment outperforms the 91- 

day adjustment, i.e., it is not bothered by crossovers over 24 days apart and, thus, can do a better job for the 30-day 

periods. 

The cross-period crossover differences are tabulated in column eight through ten. This is where the three-day 

and six-day criterions have failed most miserably. It is apparent that large portions of the orbit error are still present 

after these adjustments and the situation gets worse as the time separation becomes longer. To a much lesser extent, 

this is also true for the twelve-day and 24-day adjustments. Although in the latter cases, it gets harder to distinguish 

signal from noise, Le., is the increase in residual crossover differences due to the long-term large-scale oceanic sig- 

nal or due to the residual orbit error? The results of the 91-day adjustment at least support the notion that there is 

indeed appreciable long-term oceanic signal in the residual crossover differences. (See how the residual increases 

with longer time separation). All in all, this is perhaps not a fair test of the idea of using time criterions with the 

crossover adjustment because of the problem presented by the unusually severe nonstationady of the orbit error in 

this data set. The idea would not work when there is overwhelming long-term orbit error. 

5. DISCUSSION 

The merits of the sinusoidal representation should become most apparent when extremely long tracks are 

involved, such as in a global adjustment. The present analysis could have been done using the bias-and-tilt or the 

quadratic representation, although the implementation of which would have been much more complicated (see Sec- 

tions 3a and 3c). A global adjustment using Seasat or Geosat exact-repeat data will be pursued in the near future to 

verify this conjecture. However, the reader is warned against using the sinusoidal method alone without the con- 

straint when the tracks are short. The reason is as follows. When a track is but a small fraction of one revolution, 

many sine waves with varying amplitudes and phases can fit the track about equally well. Therefore the problem is 

basically ill-conditioned when the tracks are short. The idea of coupling time criterions with the crossover adjust- 

ment to preserve the large-scale oceanic changes will also be pursued further, preferably in a case that the orbit error 

is more or less stationary. 
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APPENDIX A: FIXING TRACKS IN SMALL REGIONS 

For small regions, the satellite tracks resemble the pattern produced by two intersecting sets of parallel lines 

(see Figure 3). We have also adopted in Figure 3 a coordinate system, in which the x axis is parallel to one set of 

tracks, while the y axis is parallel to the other set. What we want to prove is that (a) two parallel tracks need to be 

fixed to remove the nonuniqueness in a bias-and-tilt adjustment, (b) three parallel tracks have to be fixed in a qua- 

dratic adjustment. The basic cause for the nonuniqueness is that any geographically dependent function that can be 

expressed as a bias and a tilt (and a curvature) along each track would not produce any crossover difference; and 

when this function is added to a solution, it would constitutes another solution; hence the nonuniqueness. 

(a) Bias-and-tilt case 

Fixing one track is not enough is readily apparent since the whole surface can be tilted with the fixed track as 

the hinge. Now the question is: is fixing two arbitrary tracks enough? The answer appears to be affirmative. But 

we can show an example in which fixing two intersecting tracks is actually not enough. Suppose the tracks labeled 

x = a and y = b are fixed. One can verify that the following geographically dependent function A(x-a)(y-b), where 

A is arbitrary, vanishes along x = a and y = b. but can be expressed as bias and tilt along any other line parallel to 

the x axis or the y axis, thus would cause arbitrariness. However, if two parallel lines are fixed (for example, x = a 

and x = -a). Then they would fix all lines parallel to the x axis, in turn they would fix all lines parallel to the y axis. 

(b) Quadratic case 

In this case, fixing two parallel tracks is not enough. Just consider the function A (x2-u2). where A is arbi- 

trary, when x = + a and x = -a are fixed. We can show that fixing three intersecting tracks is not enough. Suppose y 

= b in addition to x=a and -a are fixed. Then the following function A (x -u )(y2-b2) clearly vanishes along x=a, -a 

and y=b, -b. But along any line parallel to the x or y axis, the function is a quadratic curve, thus nonuniqueness 

again. However, if three parallel tracks are fixed (say parallel to the y axis), then all tracks parallel to the x axis are 

fixed, in turn they would fix all tracks parallel to the y axis. 

2 2  
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APPENDIX B: LINEAR OPTIMAL ESTIMATOR 

It can be proved piebelt, 1967; Bretherton et al., 19761 that given z and correlations R, and R, , the linear 

optimal estimator for x is 

j z  = R,R,-'z (13) 

Equation (13) is better known as the objective mapping to physical oceanographers. Equations (8) and (13) coupled 

with the assumption that R,, = 0 lead to 

P = R , H ~ ( H R , H ~  + R J ~ Z  . (14) 
That equations (9) and (14) are equivalent can be established with the help of a matrix identity [see Liebelt, 1967, 

equation (1 -5 l)] 

APPENDIX C: LARGE-SCALE SEA LEVEL CHANGES TRANSLATED INTO BIAS AND TILT ALONG 

TRACK 

The purpose of this appendix is to show by a simple heuristic example that a large-scale sea level change can 

translate directly into the bias and tilt along a satellite track. Thus, even a bias-only adjustment can remove the part 

that is translated into the bias. The configuration is depicted in Figure 4, where the coordinate system is so chosen 

that a large-scale tilt of the sea surface is transformed into a tilt with the y axis acting as the hinge, i.e. the sea level 

change (relative to the mean of the adjustment period) can be expressed as z = b(t)x, where z is the sea level and b(t) 

is a function of t. A satellite track from point A to B (the arrow points in the direction of propagation) makes an 

anle 8 with the positive x axis. And x, is the projection to the x axis from the mid-point of segment AB. Then it is 

easy to show that the sea level change appears to the track as a bias of bx, and a tilt of b cos 8, where the tilt (or 

slope) is defined with the distance increasing in the direction of propagation. 
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FIGURE LEGENDS 

Figure 1. Histograms of (a) the unadjusted crossover differences and (b) the residual crossover differences. 

Figure 2. Map of the tropical Pacific. Data coverage from 20"s to 20"N latitudes and 127"E to 285"E longi- 
tudes. 

Figure 3. Satellite ground track pattern for small regions. 

Figure 4. Configuration for Appendix C. 



- I?- 

~ T a b l e  1 .  RMS r e l a t i v e  e r r o r  ( i n  p e r c e n t s )  f o r  b i a s - o n l y ,  b i a s  a n d  t i l t ,  a n d  
q u a d r a t i c  r e p r e s e n t a t i o n s  o f  t h e  o r b i t  e r r o r  v e r s u s  t h e  t r a c k  l e n g t h  
( i n  d e g r e e s  w i t h  3 6 0  c o r r e s p o n d i n g  t o  one w a v e l e n g t h ) .  

T r a c k  L e n g t h  
( i n  d e g r e e s )  

15  

30 

45 

6 0  

7 5  

9 I:, 

105 

1 2 0  

1 3 5  

1 5 0  

1 6 5  

180  

RMS R e l a t i v e  E r r o r  ( i n  p e r c e n t s )  
B i a s - o n 1  y B i a s  a n d  T i l t  Q u a d r a t i c  

7 . 5 5  0 . 2 5 5  0 . 0 0 5 6  

1 5 . 0 5  1 . 0 1 8  0 . 0 4 5 1  

2 2 . 4 4  2 . 2 7 9  0 . 1 5 1 5  

2 9 . 6 8  4 . 0 2 3  0 . 3 5 7 0  

3 6 . 7 3  6 . 2 3 1  0 . 6 9 2 2  

4 3 . 5 2  8 . 8 7 7  1 . 1 8 5 4  

5 0 . 0 3  1 1  . 9 2 9  1 . 8 6 2 4  

5 6 . 2 2  1 5 . 3 5 3  

6 2 . 0 5  1 9 . 1 0 9  

6 7 . 4 9  2 3 . 1 5 5  

7 2 . 5 2  2 7 . 4 4 4  

7 7 . 1 2  3 1 . 9 2 9  

2 . 7 4 6 1  

3 . 8 5 5 8  

5 . 2 0 7 3  

6 . 8 1 2 2  

8 . 6 7 8 1  



- l!3- 
ORlGINAL PAGE IS 
OF POOR 

T a b l e  2 .  R M S  c r o s s o v e r  d i f f e r e n c e  ( i n  cm) i n  2' l a t i t u d e  b y  loo l o n g i t u d e  
9 b i n s  f o r  ( a )  u n a d j u s t e d ,  ( b )  a d j u s t e d  v a l u e s ,  a n d  (c) n u m b e r  o f  r e c o r d s .  
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130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 

103 88 110 130 143 146 135 122 114 103 85 79 126 62 140 105 
103 93 117 127 142 154 134 132 113 113 83 73 127 115 139 101 
92 100 116 129 146 152 126 132 106 116 85 72 125 99 13 1  I 1 2  
98 101 1 1 2  136 150 150 130 143 1 1 2  123 93 76 128 113 129 114 
96 100 103 141 153 150 132 143 109 129 88 77 114 119 132 96 
96 102 122 135 162 152 129 145 102 127 91 80 113 123 129 103 

101  110 135 142 164 154 129 148 103 139 100 84 1 1 1  134 133 105 
98 121 139 134 167 148 136 154 100 145 98 82 109 140 I24 97 
93 123 149 131 165 160 134 155 98 142 104 80 1 1 2  144 120 100 
92 129 147 130 154 157 139 153 102 148 113 87 106 154 120 109 ( a )  

150 140 149 122 158 165 141 148 105 144 110 83 102 160 1 1 5  110 
1 1 1  207 148 132 161 166 1 5 2  149 117 145 108 86 101 164 122 98 
117 100 I45 124 171 157 144 144 1 1 1  141 105 88 101 166 118 97 
110 113 165 126 159 160 145 146 ,120 142 105 93 107 166 118 102 
115 168 162 135 165 159 152 147 128 138 105 96 101 162 1 1 4  91 
131 158 189 133 166 150 149 147 136 135 108 103 107 161 117 104 
163 168 200 131 171 152 149 140 137 127 109 107 1 1 1  147 105 97 
165 164 192 140 164 153 157 142 147 118 117 108 119 145 106 100 
0 21 1  185 151 157 156 154 133 152 114 122 112 119 141 108 103 
0 0 177 155 153 162 158 129 154 102 125 118 119 135 105 106 

130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 

1 2  15 14 1 1  1 1  12 13 10 9 9 9 10 9 18 15 1 1  
1 2  1 2  1 1  9 9 1 1  10 1 1  8 8 7 10 10 1 2  8 10 
I 2  9 1 0  9 8 9 8 7 7 9 8 9 9 1 0  7 1 2  
10 9 10 9 8 9 10 , 8  9 8 10 1 1  10 I 2  20 10 
9 9 9 9 9 8 8 .9 8 9 8 1 1  14 12 12 10 
10 1 1  10 8 9 8 9 8 10 9 7 I2 1 1  1 1  8 9 
1 2  12 10 8 9 9 1 1  10 1 1  13 9 12 10 8 8 13 
15 15 10 10 8 1 1  1 2  1 1  10  10 10 12 I2 9 7 1 1  
1 4 1 6 1 0 1 0 1 0 1 0  9 1 0  9 9 8 8 9 7 6 8 
1 6 1 8  9 7 1 0  9 8 9 7 7 8 8 6 7 7 6 (b) 
6 2 2 0 1 0  9 9 1 0  9 7 7 7 8 7 6 6 6 9 
5 4 2 4 1 2 1 1 1 0 1 0  9 8 8 8 7 7 6 7 6 8 
16 24 12 1 1  10 10 9 8 8 9 9 8 8 6 6 1 2  
1 2 4 6 1 1  1 1 1 0  9 9 8 8 9 8 7 7 7 6 1 1  
14 49 15 15 13 10 10 10 8 9 7 7 6 6 6 6 
23 34 1 2  1 1  1 1  1 1  10 10 8 8 7 6 5 6 6 5 
40 27 10 10 10 10 1 1  9 8 7 7 6 6 5 5 5 
8 8 3 7 1 2 1 1  9 9 1 0  8 9 8 7 7 6 6 6 7 
0 4 8 1 4  9 1 0  9 1 0  9 1 1 1 0  8 8 7 7 6 6 
0 0 15 1 1  12 12 10  10 1 1  1 2  9 8 8 7 8 6 

130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 

1 4 2  186 176 206 204 205 219 177 210 219 192 202 134 1 1  77 128 
134 191 175 189 183 190 204 178 201 198 182 197 148 42 37 133 
110 162 157 169 177 175 191 179 177 188 165 175 139 106 1 1  128 
113 158 168 202 182 191 198 187 194 188 182 177 155 140 57 147 
113 154 168 201 195 206 2 1 2  201 211 178 186 197 152 165 113 141 
104 158 168 178 159 183 184 187 188 167 167 178 144 144 1 1 1  26 
80 I26 133 132 129 145 158 157 164 147 163 158 144 161 121 66 

101 134 145 161 159 193 184 199 199 186 211 193 172 193 186 120 
86 114 108 127 125 163 155 150 173 154 175 159 143 170 144 100 

17 98 113 128 153 172 178 158 181 170 178 167 1 5 2  158 130 68 
20 28 91 146 164 195 189 188 192 183 203 175 180 180 183 66 

98 29 64 101 131 150 132 172 171 159 180 158 170 161 150 77 
1 2 5  99 69 62 163 189 174 174 195 167 211 184 200 200 171 1 2 3  
1 0 3  150 137 136 166 204 194 192 204 174 220 192 199 213 177 148 
38 87 131 137 145 155 154 156 146 148 168 153 155 161 151 127 
9 77 169 173 181 179 172 195 143 178 195 192 180 183 180 172 
0 14 151 180 168 158 179 186 158 157 179 178 181 176 186 177 
0 0 128 187 184 182 177 197 182 180 203 186 169 180 181 176 

75 149 143 1 5 2  160 205 194 193 215 201 210 197 183 137 167 92 ( c )  

84 6 47 130 145 154 153 177 191 185 208 183j183 178 173 74 



Table 3. Performance comparison of adjustments wilh time criterions (all residual crossovers in cm. 
Detailed explanation in text). 

RMS 
residual 
of all 
crossovers 

RMS 
residual 
of adjusted 
crossovers 

No. of 
crossovers 
used in 
adjustment 

RMS 
of the 
elements 
ofx 

Unadjusted 
9 l-day 
24-day 
12-day 
6-day 
3-day 

130.00 
10.85 
1 1.42 
12.40 
15.70 
20.51 

N.A. 
10.85 

8.96 
7.26 
5.10 

9.88 

N.A. 
49,576 
22,651 
12,513 
6,520 
3,360 

N.A. 
75.27 
74.10 
73.67 
73.07 
69.75 

RMS 
residual 
between 
periods 

l&l 
18.41 
10.25 
9.64 

10.05 
12.12 
15.13 

10.13 
9.96 

10.33 
1 1.28 
14.49 

3&3 
171.29 
10.60 
10.20 
11.00 
14.78 
15.79 

1&2 
104.42 
10.93 
11.64 
12.89 
14.21 
17.86 

2&3 
150.36 
10.89 
11.59 
12.55 
15.51 
19.18 

1 &3 
129.22 
11.49 
13.01 
14.31 
18.11 
23.43 



- 20- 
ORIGINAL PAGE IS 
_01E EOOR Q U U ' J X  

NUMBER OF CROSSOVERS 
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1390 1400 1500 

I 1  I I I I I I I I I I I I I I I 
L11 
! 2 l  

0 v-b 0 

U 

Ln 

e m 

0 

- 7 -  

m 

g 0  
X g  

7 8  

z g  

m z  

c-( 

3- 
0 
m 

0 

N 
L11 
0 

w 
0 
0 

EiJ 
0 



. --- 

I 
h) 

8 - 
(E 0 

I 

0 

I 

4 
0 

L 

m 

c 

c 
N 
0 

L 

0 0 

L 

N 
0 

- 
4 
0 

L 

01 
0 

- 
m 
0 

N 
C 
C 

- 2\- 

, ..._ I 

NUMBER OF CROSSOVERS 
1000 2000 3000 4000 5000 6000 7000 BOO0 9000 10000 11000 

I I I I I I I I I I I 

I I 
I 

1 

I 
I 

J 



- 2 2  - 

ORIGINAL PAGE B. 
OF POOR Q U M  

LATITUDE 
-30 -20 -10 I IO 20 

i 





- 24- 


